Riesz Bases in Subspaces of L 2 (ir + ) Riesz Bases in Subspaces of L 2 (ir + )
نویسندگان
چکیده
In recent investigation 8] concerning the asymptotic behavior of Gram Schmidt or-thonormalization procedure applied to the nonnegative integer shifts of a given function, the problem of determining whether or not such functions form a Riesz system in L 2 (IR +) arose. In this note, we provide a suucient condition to determine whether the nonnegative translates form a Riesz system on L 2 (IR +). This result is applied to identify a large class of functions for which very general translates enjoy the Riesz basis property in L 2 (IR +).
منابع مشابه
A characterization of L-dual frames and L-dual Riesz bases
This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.
متن کاملFrames and Stable Bases for Shift-invariant Subspaces of L 2 (ir D ) Frames and Stable Bases for Shift-invariant Subspaces of L 2 (ir D )
Let X be a countable fundamental set in a Hilbert space H, and let T be the operator T : `2(X)! H : c 7! X
متن کاملOn duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules
In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...
متن کاملG-Frames, g-orthonormal bases and g-Riesz bases
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.
متن کاملA New Approach to Continuous Riesz Bases
This paper deals with continuous frames and continuous Riesz bases. We introduce continuous Riesz bases and give some equivalent conditions for a continuous frame to be a continuous Riesz basis. It is certainly possible for a continuous frame to have only one dual. Such a continuous frame is called a Riesz-type frame [13]. We show that a continuous frame is Riesz-type if and only if it is a con...
متن کامل